Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition

نویسندگان

  • Emily C. Benesh
  • Paul M. Miller
  • Elise R. Pfaltzgraff
  • Nathan E. Grega-Larson
  • Hillary A. Hager
  • Bong Hwan Sung
  • Xianghu Qu
  • H. Scott Baldwin
  • Alissa M. Weaver
  • David M. Bader
چکیده

Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the "autocrine extracellular matrix (ECM) deposition" fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell-directed movement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response

The most prominent developmental function attributed to the extracellular matrix (ECM) is cell migration. While cells in culture can produce ECM to migrate, the role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to the moving cells. In contrast to this view, we show here that Drosophila embryonic hemocytes deposit their own laminins in ...

متن کامل

Bves: prototype of a new class of cell adhesion molecules expressed during coronary artery development.

Bves is a protein expressed in cells of the developing coronary vascular system, specifically in the proepicardium, migrating epithelial epicardium, delaminated vasculogenic mesenchyme and vascular smooth muscle cells. Here, we show that Bves protein undergoes a dynamic subcellular redistribution during coronary vessel development. Bves is a membrane protein with three predicted transmembrane h...

متن کامل

Blood vessel/epicardial substance (bves) expression, essential for embryonic development, is down regulated by Grk/EFGR signalling.

The Pop1/Bves (blood vessel/epicardial substance) gene is a member of the popeye gene family recently identified in various species. It encodes a potential transmembrane glycoprotein and is a cell adhesion molecule present in skeletal and cardiac muscle and epithelia. We isolated the Drosophila homologue of Bves (DmBves) and found, using in situ hybridisation to RNA in ovaries, that bves is exp...

متن کامل

Bves Modulates Tight Junction Associated Signaling

Blood vessel epicardial substance (Bves) is a transmembrane adhesion protein that regulates tight junction (TJ) formation in a variety of epithelia. The role of TJs within epithelium extends beyond the mechanical properties. They have been shown to play a direct role in regulation of RhoA and ZONAB/DbpA, a y-box transcription factor. We hypothesize that Bves can modulate RhoA activation and ZON...

متن کامل

Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility

Directional cellular movement is required for various organismal processes, including immune defense and cancer metastasis. Proper navigation of migrating cells involves responding to a complex set of extracellular cues, including diffusible chemical signals and physical structural information. In tissues, conflicting gradients and signals may require cells to not only respond to the environmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013